Exercise 8

Find the area of a parallelogram bounded by the x-axis, the line $g(x)=2$, the line $f(x)=3 x$, and the line parallel to $f(x)$ passing through $(6,1)$.

Solution

Start by writing equations of the lines that are given. The equation for the x-axis is $y=0, y=2$ is given, $y=3 x$ is given, and the line parallel to $f(x)$ has the same slope (3) with an equation given by the point-slope formula.

$$
\begin{gathered}
y-1=3(x-6) \\
y-1=3 x-18 \\
y=3 x-17
\end{gathered}
$$

Now graph all of them.

The area of the enclosed parallelogram is

$$
A=\int_{0}^{2}\left(\frac{y+17}{3}-\frac{y}{3}\right) d y=\int_{0}^{2}\left(\frac{17}{3}\right) d y=\frac{17}{3}(2-0)=\frac{34}{3} .
$$

The point of intersection on the top left is found by solving the linear equations simultaneously.

$$
\begin{gathered}
y=2 \quad \text { and } \quad y=3 x \\
2=3 x \\
\frac{2}{3}=x
\end{gathered}
$$

The top left point of intersection is $\left(\frac{2}{3}, 2\right)$. The top right point of intersection is found similarly.

$$
\begin{gathered}
y=2 \quad \text { and } \quad y=3 x-17 \\
2=3 x-17 \\
19=3 x \\
\frac{19}{3}=x
\end{gathered}
$$

The top right point of intersection is $\left(\frac{19}{3}, 2\right)$. The bottom right point of intersection is found similarly.

$$
\begin{gathered}
y=0 \quad \text { and } \quad y=3 x-17 \\
0=3 x-17 \\
17=3 x \\
\frac{17}{3}=x
\end{gathered}
$$

The bottom right point of intersection is $\left(\frac{17}{3}, 0\right)$.

